
Visual Malware Reversing

How to Stop Reading Assembly and Love the Code

Danny Quist

ShmooCon 111

January 30, 2011

Danny Quist

• Founder of OffensiveComputing.net

– Free malware!

– RE Training!

– 2.3 million samples!– 2.3 million samples!

• Ph.D. Computer Science, New Mexico Tech

• Twitter: @ocomputing

• Research scientist

Los Alamos National Laboratory

Goals

• Identify structure of malware quickly

• Remove difficulty of unpacking

• Remove dependence on tools like IDA

• Play nicely with others• Play nicely with others

– IDA

– OllyDbg

– WinDbg

– GDB

Complexities of Reverse Engineering

• Most malware is compiled Intel x86 Assembly
Compiler

• Machine code is more

complex

• Optimizations make

C Code – 45 lines Relevant Assembly Code

• Optimizations make

analysis more difficult

• Total code size is 1,200

instructions

• 118 Relevant assembly

instructions

• Much of machine code is

compiler boiler plate

Reverse Engineering

Complexities of Reverse Engineering

• Executables can be obfuscated

Packing /

Obfuscations
Compiler

Information Loss - (Comments, Variable Names, Original Structure of CodeInformation Loss - (Comments, Variable Names, Original Structure of Code

VERA Overview

• Functionality

• New features

• Ether Import Rebuilding

• Better OEP detection

• IDA Pro Integration

• VERAtrace – No Xen / Ether hardware required!

• Imports in the VERA GUI

What is VERA?

• Visualizing Executables for Reversing and Analysis

• High-level overview of entire program

Low-level drill-down of details• Low-level drill-down of details

• Free!

• Development is funded!

Demo1 - VERA

What the Colors Mean

• Yellow – Normal uncompressed low-entropy

section data

• Dark Green – DLL / API / Section not present

• Light Purple – SizeOfRawData = 0• Light Purple – SizeOfRawData = 0

• Dark Red – High Entropy

• Light Red – Instructions not in the packed exe

• Lime Green – Operands don’t match

Generating Traces

• Ether

– Set of patches to the Xen hypervisor

– Allows for covert tracing of executables

• Veratrace – NEW!

– Intel PIN system suitable for use in VMWare

– Commercial code analysis

• Output from debuggers (GDB/WinDbg/…)

Ether Improvements

• Import reconstruction using kernel data

structures

• OEP detection from stack back-tracking

technique

• Antivirus scanning performance improved

Importance of Repairs

• Viruses can be packed and avoid detection

• Removing imported APIs takes data away from analysis engines

• Original Entry Point (OEP) Detection hasn’t progressed in years

– Watch for all written memory, log into a hash table

– If there is an execution in written memory guessed to be OEP– If there is an execution in written memory guessed to be OEP

– Dump contents of memory

– Problems

• Multiple obfuscations

• Staged unpacking

• Lots of candidate OEPs

• Restoring this information improves existing AV tools accuracy

Imported API Recovery

• Removing Imported APIs is first obfuscation step

• Reverse engineering is difficult without APIs

– Provide no context for code

– Order of magnitude increase in complexity

– Restoring them is extremely valuable

Which is easier to read?
No Imports

Which is easier to read?
No Imports Imports Rebuilt

Import Repair Process

• Find the original entry point

– Unpack code until this address is found

– Use OEP method discussed later

• Find references to imported DLLs• Find references to imported DLLs

– call [ADDRESS]

– jmp [ADDRESS]

Import Address Table (IAT)

Import Repair Process

• Each imported DLL has an IAT corresponding to the
APIs brought into the application

• The first DLL is found by backtracking the IAT memory
until a NULL is found.until a NULL is found.

• The DWORD after the NULL is the beginning of that
DLL’s API

• How do we determine which DLL belongs to which
memory address?

Determining DLL Address Space

• Old Method
– Attach to process via debugger interface

– Call windows APIs to query address module

– Resolve addresses from the DLL listings– Resolve addresses from the DLL listings

• Problems
– Hypervisor has no access to internal Windows APIs

– Access to APIs would violate sterility of guest environment
(DETECTION)

– No real way to extract data we need

Import Repair Process

• New Method – Use kernel memory management
data structure

• Virtual Address Descriptor – VAD
– Each process has a VAD to describe memory usage

– OS uses VADs to interact with CPU MMU– OS uses VADs to interact with CPU MMU

– Very accurate use of process space

• Data Structure - Balanced Binary Tree
– Address space

– Size of memory region

– Execution flags

– Module memory mapping

This is all the information

needed to rebuild imports

Executable Memory Space
R

in
g

-0
 A

d
d

re
ss

 S
p

a
ce

0x80000000

Process VAD Tree

ImageBase

ADVAPI32.dll

WS2_32.DLL.Data

KERNEL32.DLL

Process Virtual Address Descriptor Tree

0x7FFFFFFF

0x80000000

0x00000000

PEB (FS:30)

WS2_32.DLL

KERNEL32.DLL

ImageBase

…

ADVAPI32.dll

ImageBase

KERNEL32.DLL

R
in

g
-3

 A
d

d
re

ss
 S

p
a

ce

Original Entry Point Detection
• Standard OEP discovery

produces many file

• Most common packers

produce few samples

Packer Detected OEPs

Armadillo 1

Petite 1

UPX 1

UPX Scrambler 1

Aspack 2

• Complex packers increase

complexity of unpacking

• Requires manual analysis

of each candidate dump

FSG 2

PECompact 2

VMProtect 12

PEPack 12

AsProtect 15

Themida 33

Yoda 43

PEX 133

MEW 1018

OEP Algorithm

RET: 0x59009538

Stack Data

RET: 0x59010030

Stack Data

….

push ebp

mov ebp, esp

sub esp, 6A58h

xor eax, eax

2. Unwind

stack until

no more

frames

found

OEP

RET: 0x59009500

Stack Data

….

RET: 0x59009530

Stack Data

….

Stack Data

….

xor eax, eax

mov edx, 0x43

shl edx, 32

mov ecx, 0xBE

shl ecx,

mov eax 0xEF9ECA4E

xor eax, 0x313374A1

call eax

1. Start at EBP

3.

Backtrack

assembly to

the

beginning

of code /

preamble

Problems with Ether

• Heavy-weight analysis system

• Not portable to common VMs like Vmware

• Problems Installing Ether

– Old version of Xen (3.1.x)– Old version of Xen (3.1.x)

– Debian

– Other bugs

• Provide alternate way to collect information

VERATrace

• Intel PIN based instruction tracing program

• Usable on VMWare / VirtualBox / VirtualPC

• Useful for analyzing non-obfuscated programs• Useful for analyzing non-obfuscated programs

• Extensions planned to hide from malware

• Unpacking (See Saffron-DI)

• Adds import data to VERA

Veratrace Demonstration

Demo 2Demo 2

Veratrace Malware

Demo 3Demo 3

Caveat Emptor

• Intel PIN is very detectable

– Malware doesn’t always run well

– Ether was made for malware analysis

– Sometimes useful results are found

VERA IDA Plugin

• Used to correlate VERA graphs with IDA

• TCP Connection from IDA Pro system to VERA

• Synchronization with IDA representation

• Identify core constructs

VERA – IDA Plugin

VERA

Analysis Machine
Vmware / Virtual PC / Virtual Box

IDA Pro

Local / Virtual MachineTCP Connection

IDA Integration

Demo 4Demo 4

Future Work

• Memory usage analysis

• Integrating string analysis in the graph

• Explore 3D visualizations

• Better integration with Debuggers

Conclusion

• New Features

– Better import recovery in Ether

– New OEP Algorithm– New OEP Algorithm

– New tracing tool VERATrace

– IDA Pro Plugin

– Imports in the visualization

http://www.offensivecomputing.net/vera

Twitter: @ocomputing

Thanks ShmooCon!

